Home
Class 11
PHYSICS
A vector parallel to the vector (hati+2h...

A vector parallel to the vector `(hati+2hatj)` and having magnitude `3sqrt(5)` units is

A

`3hati+6hatj`

B

`6hati-3hatj`

C

`4hati-2hatj`

D

`hati-2hatj`

Text Solution

AI Generated Solution

The correct Answer is:
To find a vector parallel to the vector \( \hat{i} + 2\hat{j} \) with a magnitude of \( 3\sqrt{5} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Given Vector**: The given vector is \( \mathbf{v} = \hat{i} + 2\hat{j} \). 2. **Find the Magnitude of the Given Vector**: The magnitude of the vector \( \mathbf{v} \) is calculated using the formula: \[ |\mathbf{v}| = \sqrt{(1)^2 + (2)^2} = \sqrt{1 + 4} = \sqrt{5} \] 3. **Determine the Unit Vector**: To find the unit vector in the direction of \( \mathbf{v} \), we divide the vector by its magnitude: \[ \hat{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\hat{i} + 2\hat{j}}{\sqrt{5}} = \frac{1}{\sqrt{5}}\hat{i} + \frac{2}{\sqrt{5}}\hat{j} \] 4. **Calculate the Required Vector**: The required vector \( \mathbf{A} \) with a magnitude of \( 3\sqrt{5} \) in the direction of \( \hat{u} \) is given by: \[ \mathbf{A} = |\mathbf{A}| \cdot \hat{u} = 3\sqrt{5} \left( \frac{1}{\sqrt{5}}\hat{i} + \frac{2}{\sqrt{5}}\hat{j} \right) \] 5. **Simplify the Expression**: Simplifying the above expression: \[ \mathbf{A} = 3\sqrt{5} \cdot \frac{1}{\sqrt{5}}\hat{i} + 3\sqrt{5} \cdot \frac{2}{\sqrt{5}}\hat{j} = 3\hat{i} + 6\hat{j} \] 6. **Final Result**: Therefore, the vector parallel to \( \hat{i} + 2\hat{j} \) with a magnitude of \( 3\sqrt{5} \) is: \[ \mathbf{A} = 3\hat{i} + 6\hat{j} \]

To find a vector parallel to the vector \( \hat{i} + 2\hat{j} \) with a magnitude of \( 3\sqrt{5} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Given Vector**: The given vector is \( \mathbf{v} = \hat{i} + 2\hat{j} \). 2. **Find the Magnitude of the Given Vector**: ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NARAYNA|Exercise LEVEL-II (H.W)|14 Videos
  • VECTORS

    NARAYNA|Exercise LEVEL-II (C.W)|16 Videos
  • UNITS AND MEASUREMENTS

    NARAYNA|Exercise STATEMENT TYPE QUESTION|23 Videos
  • WAVES

    NARAYNA|Exercise Exercise-IV|56 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector parallel to the vector -3hati+4hatj .

Find a vector which is parallel to vector vecA=4 hati-3 hatj and have the same magnitude as vector vecB=8hati+6hatj .

Find a unit vector parallel to the sum of the vector (hati + hatj + hatk) and (2hati - 3hatj + 5hatk) .

Unit vector parallel to the resultant of vector 8hati and 8hatj will be

The unit vector parallel to the resultant vector of 2hati+4hatj-5hatk and hati+2hatj+3hatk is

Find the unit vector parallel to the resultant vector of 2hati+4hatj-5hatk and hati+2hatj+3hatk .

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

Find a vector in the directionof vector vec=hati-2hatj that has magnitude 7 units.

Find the vector equation of a line parallel to the vector 2hati-hatj+2hatk and passing through a point A with position vector 3hati+hatj-hatk .

NARAYNA-VECTORS-LEVEL-I (H.W)
  1. The vector parallel to 4hati-3hatj+5hatk and whose length is the arith...

    Text Solution

    |

  2. The direction consines of a vector vecA are cos alpha=(4)/(5sqrt(2)), ...

    Text Solution

    |

  3. Given two vectors vecA=hati-2hatj-3hatk and vecB=4hati-2hatj+6hatk. Th...

    Text Solution

    |

  4. To go from town A to town B a plane must fly about 1780 km at an angle...

    Text Solution

    |

  5. A vector hati+sqrt(3)hatj rotates about its tail through an angle 60^(...

    Text Solution

    |

  6. If veca=2hati+6hatj+mhatk and vecb=nhati+18hatj+3hatk are parallel to ...

    Text Solution

    |

  7. A particle has an initial velocity (6hati+8hatj) ms^(-1) and an accele...

    Text Solution

    |

  8. A motor boat is going in a river with a velocity vec(V) = (4 hat i-2 h...

    Text Solution

    |

  9. The angle between the two vectors -2hati+3hatj-hatk and hati+2hatj+4ha...

    Text Solution

    |

  10. If a vector vecA=2hati=2hatj+3hatk, and vecB=3hati=6hatj+nhatk, are pe...

    Text Solution

    |

  11. A vector parallel to the vector (hati+2hatj) and having magnitude 3sqr...

    Text Solution

    |

  12. If vecA=5hati-2hatj+3hatk and vecB=2hati+hatj+2hatk, component of vecB...

    Text Solution

    |

  13. If the vectors vecA=ahati+hatj-2hatk and vecB=ahati-ahatj+hatk are per...

    Text Solution

    |

  14. When a force (8hati+4hatj) newton displaces a particle through (3hati-...

    Text Solution

    |

  15. If veca and vecb are two unit vectors and the angle between them is 60...

    Text Solution

    |

  16. If vecF=2hati+3hatj-hatk and vecr=hati-hatj+6hatk find vecrxxvecF

    Text Solution

    |

  17. Two sides of a triangle are given by hati+hatj+hatk and -hati+2htj+3ha...

    Text Solution

    |

  18. The magnitude of scalar and vector products of two vectors are 144 and...

    Text Solution

    |

  19. Area of a parallelogram formed by vectors (3hati-2hatj+hatk)m and (hat...

    Text Solution

    |

  20. Find the value of x and y for which vectors vecA=6hati+xhatj-2hatk and...

    Text Solution

    |