Home
Class 11
PHYSICS
If vecA+vecB=vecR and 2vecA+vecB is perp...

If `vecA+vecB=vecR` and `2vecA+vecB` is perpendicular to `vecB` then

A

A=R

B

B=2R

C

B=R

D

B=A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations and conditions: 1. **Given Equations**: - \(\vec{A} + \vec{B} = \vec{R}\) (Equation 1) - \(2\vec{A} + \vec{B}\) is perpendicular to \(\vec{B}\) (Equation 2) 2. **Understanding Perpendicular Vectors**: - Two vectors are perpendicular if their dot product is zero. Therefore, we can write: \[ (2\vec{A} + \vec{B}) \cdot \vec{B} = 0 \] 3. **Expanding the Dot Product**: - Using the properties of the dot product, we expand the left-hand side: \[ 2\vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{B} = 0 \] - Here, \(\vec{B} \cdot \vec{B} = |\vec{B}|^2\). Thus, we can rewrite the equation as: \[ 2\vec{A} \cdot \vec{B} + |\vec{B}|^2 = 0 \] 4. **Solving for \(\vec{A} \cdot \vec{B}\)**: - Rearranging gives us: \[ 2\vec{A} \cdot \vec{B} = -|\vec{B}|^2 \] - Dividing both sides by 2: \[ \vec{A} \cdot \vec{B} = -\frac{1}{2}|\vec{B}|^2 \] 5. **Using Equation 1**: - From Equation 1, we can express \(\vec{A}\) in terms of \(\vec{R}\) and \(\vec{B}\): \[ \vec{A} = \vec{R} - \vec{B} \] 6. **Substituting \(\vec{A}\) into the Dot Product**: - Substitute \(\vec{A}\) into \(\vec{A} \cdot \vec{B}\): \[ (\vec{R} - \vec{B}) \cdot \vec{B} = -\frac{1}{2}|\vec{B}|^2 \] - Expanding this gives: \[ \vec{R} \cdot \vec{B} - |\vec{B}|^2 = -\frac{1}{2}|\vec{B}|^2 \] 7. **Rearranging the Equation**: - Rearranging leads to: \[ \vec{R} \cdot \vec{B} = \frac{1}{2}|\vec{B}|^2 \] 8. **Finding the Magnitude Relation**: - Now, we can use the relation obtained from the dot product to find the magnitude of \(\vec{A}\): - From the earlier derived equation: \[ 2\vec{A} \cdot \vec{B} = -|\vec{B}|^2 \implies \vec{A} \cdot \vec{B} = -\frac{1}{2}|\vec{B}|^2 \] - This indicates a relationship between the magnitudes of \(\vec{A}\) and \(\vec{R}\). 9. **Conclusion**: - After analyzing the equations and substituting, we find that: \[ |\vec{A}| = |\vec{R}| \] - Therefore, the correct option is \( \vec{A} = \vec{R} \).

To solve the problem, we start with the given equations and conditions: 1. **Given Equations**: - \(\vec{A} + \vec{B} = \vec{R}\) (Equation 1) - \(2\vec{A} + \vec{B}\) is perpendicular to \(\vec{B}\) (Equation 2) 2. **Understanding Perpendicular Vectors**: - Two vectors are perpendicular if their dot product is zero. Therefore, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NARAYNA|Exercise LEVEL-I (H.W)|27 Videos
  • UNITS AND MEASUREMENTS

    NARAYNA|Exercise STATEMENT TYPE QUESTION|23 Videos
  • WAVES

    NARAYNA|Exercise Exercise-IV|56 Videos

Similar Questions

Explore conceptually related problems

In the following questions a statement of assertion (A) is followed by a statement of reason ( R). A : If vecA bot vecB, then |vecA+vecB|=|A-vecB| . R: If vecA bot vecB then (vecA+vecB) is perpendicular to vecA-vecB .

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vec|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

If for two vector vecA and vecB sum (vecA+vecB) is perpendicular to the difference (vecA-vecB) . The ratio of their magnitude is

Assertion: If theta be the angle between vecA and vecB then tan theta=(vecAxxvecB)/(vecA.vecB) Reason: vecAxxvecB is perpendicular to vecA.vecB

If vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,veca!=0,vecb!=0,veca!=lamdavecb,veca is not perpendicular to vecb then vecr=

Let veca,vecb and vecc are vectors such that |veca|=3,|vecb|=4and |vecc|=5, and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendiculatr to veca and (vecc+veca) is perpendicular to vecb . Then find the value of |veca+vecb+vecc| .

Assertion: vecAxxvecB is perpendicular to both vecA+vecB as well as vecA-vecB . Reason: vecA+vecB as well as vecA-vecB lie in the plane containing vecA and vecB , but vecAxxvecB lies perpendicular to the plane containing vecA and vecB

If (veca + 3 vecb) is perpendicular to ( 7 veca - 5 vecb) and ( veca - 4 vecb) is perpendicular to ( 7 veca - 2 vecb) , then the angle between veca and vecb ( in degrees ) is ______

If veca , vecb are two vectors such that | (veca+vecb)=|veca| then prove that 2 veca + vecb is perpendicular to vecb.

Given vec(a) is perpendicular to vecb+vecc vecb , is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|