Home
Class 12
MATHS
" (7) "x^(2)+y^(2)-4x-6y-25=0...

" (7) "x^(2)+y^(2)-4x-6y-25=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following functions with respect to x: x^(2) + y^(2) - 4x- 6y - 25= 0

Through the point P(3,4) a pair of perpendicular lines are drawn which meet x-axis at the point A and B. The locus of incentre of triangle PAB is (a) x^(2)-y^(2)-6x-8y+25=0 (b) x^(2)+y^(2)-6x-8y+25=0 (c) x^(2)-y^(2)+6x+8y+25=0 (d) x^(2)+y^(2)+6x+8y+25=0

If the equation x^(2) + y^(2) - 4x - 6y-12=0 is transformed to x^(2) + y^(2) =25 when the axes are transmitted to a point then the new coordinates of (-3,5) are

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

In triangle ABC ,the equation of side BC is x-y=0. The circumcenter and orthocentre of triangle are (2,3) and (5,8), respectively. The equation of the circumcirle of the triangle is x^(2)+y^(2)-4x+6y-27=0x^(2)+y^(2)-4x-6y-27=0x^(2)+y^(2)+4x+6y-27=0x^(2)+y^(2)+4x+6y-27=0

Locus of the points of intersection of perpendicular tangents drawn one to each of the circles x^(2)+y^(2)-4x+6y-37=0, x^(2)+y^(2)-4x+6y-37=0, x^(2)+y^(2)-4x+6y-20=0 is

The two circles x^(2)+y^(2)-2x-3=0 and x^(2)+y^(2)-4x-6y-8=0 are such that