Home
Class 12
MATHS
Given that cosx/2.cosx/4.cosx/8....=sinx...

Given that `cosx/2.cosx/4.cosx/8....=sinx/x` Then find the sum `1/2^2sec^2x/2+1/2^4sec^2x/4+...`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosx/2dotcosx/(2^2)dotcosx/(2^3)...oo=(sinx)/x , then find the value of 1/(2^2)sec^2x/2+1/(2^4)sec^2x/(2^2)+1/(2^6)sec^2x/(2^3)+...oo

8sin.x/8.cos.x/2.cos.x/4.cos.x/8=

If cosx/2dotcosx/(2^2)dotcosx/(2^3)oo=(sinx)/x , then find the value of 1/(2^2)sec^2x/2+1/(2^4)sec^2x/(2^2)+1/(2^6)sec^2x/(2^3)+oo

If cosx/2dotcosx/(2^2)dotcosx/(2^3)oo=(sinx)/x , then find the value of 1/(2^2)sec^2x/2+1/(2^4)sec^2x/(2^2)+1/(2^6)sec^2x/(2^3)+oo

If (1+sinx)/(cosx)+(cosx)/(1+sinx)=4 , then find x.

Slove (2sinx-cosx)(1+cosx)=sin^2x

int(5cosx-4sinx+1/cos^2x)dx

int(5cosx-4sinx+1/cos^2x)dx

If int(sinx^8-cosx^8)/(1-2sinx^2cosx^2)dx= asin2x +c , then find the value of a.

lim_(xto(pi)) (1-sin(x/2))/(cosx/2(cosx/4-sinx/4))