Home
Class 12
MATHS
Find the value of x satisfying the equat...

Find the value of x satisfying the equation, `sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x satisfying the equation ((log)_3 (3x)^(1/3)+(log)_x(3x)^(1/3))dot(log)_3x^3+((log)_3(x/3)^(1/3)+(log)_x(3/x)^(1/3))dot(log)_3x^3=2

Find the value of x satisfying the equation,sqrt((log_(3)3sqrt(3)x+log_(x)3sqrt(3)x)*log_(3)x^(3))+sqrt(((log_(3)(3sqrt(x)))/(3)+(log_(x)(3sqrt(x)))/(3))*log_(3)x^(3))=2

Find the value of x satisfying the equation ((log)_(3)3x3+(log)_(x)3x3)log_(3)x^(3)+((log)_(3)x/33+(log)_(x)3/x3)log_(3)x^(3)=2

Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is

sqrt(log_(3)(3x^(2))log_(9)(81x))=log_(9)x^(3)

Find the value of x satisfying the equation ((log)_3 root(3)(3x)+(log)_x root(3)(3x))dot(log)_3x^3+((log)_3 root(3)(x/3)+(log)_xroot(3)(3/x))dot(log)_3x^3=2

Find the integral value of x satisfying the equation |log_(sqrt(3))x-2|-|log_(3)x-2|=2

The value of x for which the equation 5*3^(log_(3)x)-2^(1-log_(2)x)-3=0

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0