Home
Class 12
MATHS
cos-(sqrt(3x))+cos^(-1)x=(pi)/(2)...

cos-(sqrt(3x))+cos^(-1)x=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations : cos^(-1)(sqrt3x)+cos^(-1)x=pi/2

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

solve the following equations Cos^(-1) (sqrt(3).x)+Cos^(-1)(x)=(pi)/2

Prove that cos^(-1)(x)+ cos^(-1){(x)/(2)+sqrt(3-3x^(2))/(2)}=(pi)/(3) .

Prove that: (i)tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

tan ^(-1) ""{(sqrt(1+cos x)+sqrt(1-cos x)}/{sqrt(1+cosx)-sqrt(1-cos x)}}=(pi)/(4)+(x)/(2) , 0 lt x lt (pi)/(2)

prove that tan^(-1)((cos x)/(1-sin x))-cot^(-1)((sqrt(1+cos x))/(sqrt(1-cos x)))=(pi)/(4),x varepsilon(0,(pi)/(2))