Home
Class 14
MATHS
f'(1)/(f(x))dx=log(f(x))^(2)+c...

f'(1)/(f(x))dx=log(f(x))^(2)+c

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

if int(dx)/(f(x))=log(f(x))^(2)+C then

if int(dx)/(f(x))=log(f(x))^(2)+C then

int(f'(x))/(f(x))dx=log f(x)+c

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?

If int(dx)/(f(x))=log{f(x)}^(2)+c , then what is f(x) equal to ?

int (f'(x))/( f(x) log(f(x)))dx is equal to