Home
Class 11
MATHS
f(x)=ln((sqrt(8-x^(2)))/(x-2))...

f(x)=ln((sqrt(8-x^(2)))/(x-2))

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sqrt(log((3x-x^(2))/(x-1)))

f(x)=sqrt(log((3x-x^(2))/(x-1)))

f(x)=sqrt(log((3x-x^(2))/(x-1)))

If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

Sum of integers in domain of function f(x)=sqrt((6x-8-x^(2))ln^(2)(|x-4|)) is

Let f(x)=1+x ln(x+sqrt((x^(2))+1))-sqrt((1)+x^(2))andh(x)=f(x)-f^(2)(x)+f^(3)(x) Then.

The function f:A rarr R,f(x)=(1)/(sqrt(4x^(2)-1))+ln(x(x^(2)-1)) , f:A rarr R,f(x)=(1)/(sqrt(4x^(2)-1))+ln(x(x^(2)-1)) is (Here A is the largest possible domain of the given function