Home
Class 12
MATHS
The value of (dy)/(dx) is ,when y=f(1/x...

The value of `(dy)/(dx)` is ,when `y=f(1/x)"and"f^(prime)(x)=sin(x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=f((2x-1)/(x^2+1)) and f^(prime)(x)=sinx^2 , find (dy)/(dx) .

Write a value of inte^(a x)\ {a\ f\ (x)+f^(prime)(x)}\ dx

Solve x dy=(y+x(f(y/x))/(f^(prime)(y/x)))dx

Solve x dy=(y+x(f(y/x))/(f^(prime)(y/x)))dx

Solve x dy=(y+x(f(y/x))/(f^(prime)(y/x)))dx

Solve x dy=(y+x(f(y/x))/(f^(prime)(y/x)))dx

The I.F. of (dy)/(dx) - 3y Cot x = Sin x is

If y_(1)(x) and y_(2)(x) are two solutions of (dy)/(dx)+f(x)y=r(x), then y_(1)(x)+y_(2)(x) is solution of : (A) (dy)/(dx)+f(x)y=0 (B) (dy)/(dx)+2f(x)y=r(x)(C)(dy)/(dx)+f(x)y=2r(x)(D)(dy)/(dx)+2f(x)y=2r(x)

If y = f((2x-1)/(x^(2)+1)) and f^(')(x) = sin x^(2) , then dy/dx =

If y=f(x)+(1)/(y) , then (dy)/(dx)=(y^(2)f'(x))/(1+y^(2))