Home
Class 11
MATHS
If x=(log)(2a)a , y=(log)(3a)2a ,z=(log)...

If `x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a` ,prove that `1+x y z=2y z`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot

If x=(log)_(2a)a,y=(log)_(3a)2a,z=(log)_(4a)3a, prove that 1+xyz=2yz

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

If x = log_(2a)a, y = log_(3a)2a , z = log_(4a)3a , then show that xyz + 1 = 2yz .

If x = log_(2a)^(a) , y = log_(3a)^(2a) and z = log_(4a)^(3a) show that xyz = 2yz - 1.

IF x = log_(2a)a, y = log_(3a) 2a , z = log_(4a)3a , then the value of xyz + 1 is

If x=1+(log)_a b c , y=1+(log)_b c a and z=1+(log)_c a b , then prove that x y z=x y+y z+z x