Home
Class 12
MATHS
If abc = 8; a, b , c in R^+ then the m...

If `abc = 8; a, b , c in R^+` then the minimum value of `a^2 + b^2 + c^2 + ab + bc + ca` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c in R^(+), then the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) is equal to (a)abc (b)2abc (c)3abc (d)6abc

If ab + bc + ca = 0 , then the value of 1/(a^2 - bc) + 1/(b^2 - ca) + 1/(c^2 - ab) will be :

If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of a^4 +b^4 +c^4 is equal to _____

If a + b + c = 8 and ab + bc + ca = 11 , then find the value of a^(3)+b^(3)+c^(3)-3abc

The value of det[[a,b,ca^(2),b^(2),c^(2)bc,ca,ab]] equal to