Home
Class 12
MATHS
The value of sum(k=0)^oo(cos(kpi)6^k)/(k...

The value of `sum_(k=0)^oo(cos(kpi)6^k)/(k!)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(k) , be the sum of an infinite geometric series whose first term is kand common ratio is (k)/(k+1)(kgt0) . Then the value of sum_(k=1)^(oo)(-1)^(k)/(S_(k)) is equal to

The value of sum_(K=1)^(2015)cos((2kpi)/(13))(i-tan((2k pi)/(13)) is a) -1 b) 0 c) 1 d) 2

Let S_(k) be the sum of an infinite G.P series whose first is k and common ratio is (k)/(k+1)( k gt 0) . Then the values of sum_(k-1)^(oo) ((-1)^(k))/(S_(k)) is equal to

The value of sum_(k=1)^(6)[" sin"(2Kpi)/(7)- i " cos"(2Kpi)/(7)] is

The value of sum_(k=1) ^(10)( sin "" ( 2kpi )/( 11) + i cos "" ( 2kpi )/(11)) is :

Find the value of sum_(k=1)^(10){sin((2kpi)/(11))-i cos ((2kpi)/(11))}

Find the value of the sum_(k=0)^(359)k.cos k^(@)

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4)+((k-1)pi)/(6))sin((pi)/(4)+(kpi)/(6))) is equals to :