Home
Class 11
MATHS
Let f be a twice differentiable function...

Let `f` be a twice differentiable function such that `f^(x)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot` Find `h(10)ifh(5)=11`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a twice differentiable function such that f^(primeprime)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

Let f be a twice differentiable function such that f^(prime prime)(x)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

Let f be a twice differentiable function such that f^(prime prime)(x)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

Let f be a twice differentiable function such that f''(x)=-f(x), and f'(x)=g(x),h(x)=[f(x)]^(2)+[g(x)]^(2) Find h(10) if h(5)=11

Let f be a twice differentiable function such that f"(x) = -f(x) , and f'(x) = g(x) , h(x)=[f(x)]^2+[g(x)]^2 Find h(10), if h(5) = 11

If f is a twice differentiable function such that f''(x)=-f(x),f'(x)=g(x) ,h(x)=[f(x)]^2+[g(x)]^2 if h(5)=11, then h(10) equals

Let f be twice differentiable function such that f^11(x) = -f(x) "and " f^1(x) = g(x), h(x) = (f(x))^2 + (g(x))^2) , if h(5) = 11 , then h(10) is

Let f be a twice differentiable function such that f''(x)=-f(x)" and "f'(x)=g(x)."If "h'(x)=[f(x)]^(2)+[g(x)]^(2), h(a)=8" and "h(0)=2," then "h(2)=

Let f be twice differentiable function such that f^('')(x) = -f(x) and f^(')(x) = g(x) . Also h(x) = [f(x)]^(2) + [g(x)]^(2). If h(4) = 7, then h(7) =