Home
Class 11
MATHS
If x=f(t) and y=phi(t), prove that (d^2y...

If `x=f(t) and y=phi(t),` prove that `(d^2y)/(dx^2)=(f_1phi_2-f_2phi_1)/(f_1^3)` where suffixes denote differentiation `w.r.t.t.`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF x=f(t) and y=g(t) , prove that , (d^2y)/(dx^2)=(f_1g_2-g_1f_2)/(f_1^(3)) where suffixes denote differentiations w.r.t. t.

x= f(t), y= phi (t) then (d^(2)y)/(dx^(2)) = ……..

If x = phi (t), y = Psi(t) then (d^2y)/(dx^2) is

If x=f(t) and y=phi (t) then to prove that (dy)/(dx)=((dy)/(dt))/((dx)/(dt))=(phi'(t))/(f'(t)) .

If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

If x=f(t) and yy=g(t) are differentiable functions of t then (d^(2)y)/(dx^(2)) is

If x=f(t) and y=g(t) are differentiable functions of t then (d^(2)y)/(dx^(2)) is

If f(x)=x^5-3x^3+2x^2+1 . Find the differentiation of f(x) w.r.t.x.