Home
Class 11
MATHS
Prove that d/(dx)|(u1,v1,w1),(u2,v2,w2),...

Prove that `d/(dx)|(u_1,v_1,w_1),(u_2,v_2,w_2),(u_3,v_3,w_3)|=|(u_1,v_1,w_1),(u_2,v_2,w_2),(u_4,v_4,w_4)|` where `u,v,w` are functions of `x and (du)/(dx)=u_1,(d^2u)/(dx^2)=u_2,` etc.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=u//v," where "u,v," are differentiable functions of x and "vne0," then: "u(dv)/(dx)+v^(2)(dy)/(dx)=

If y=(u)/(v) , where u and v are functions of x, show that v^(3)(d^(2)y)/(dx^(2))=|{:(u,v,0),(u',v,v),(u'',v'',2v'):}| .

If y=(u)/(v) , where u and v are functions of x, show that v^(3)(d^(2)y)/(dx^(2))=|{:(u,v,0),(u',v',v),(u'',v'',2v'):}| .

If y=(u)/(v) , where u and v are functions of x, show that v^(3)(d^(2)y)/(dx^(2))=|{:(u,v,0),(u',v',v),(u'',v'',2v'):}| .

Prove that |(a+bx ,c+dx,p+qx),(ax + b, cx +d, px +q),(u,v,w)|= (1- x^3) |(a,c,p),(b,d,q),(u,v,w)|

If y=(u)/(v) , where u & v are functions of 'x' show that v^(3)(d^(2)y)/(dx^(2)) = |{:(,u,v,0),(,u',v',v),(,u'',v'',2v'):}|

Prove that Delta ={:|( a+bx,c+dx,p+qx),( ax+b,cx+d,px+q),(u,v,w) |:}=( 1-x^(2)) {:|( a,c,p),(b,d,q),(u,v,w)|:}

Prove that Delta ={:[( a+bx,c+dx,p+qx),( ax+b,cx+d,px+q),(u,v,w) ]:}=( 1-x^(2)) {:[( a,c,p),(b,d,q),(u,v,w)]:}