Home
Class 11
MATHS
Let y=f(x).phi(x) and z=f'(x).phi'(x). p...

Let `y=f(x).phi(x) and z=f'(x).phi'(x).` prove that `1/y*(d^2y)/(dx^2)=1/f*(d^2f)/(dx^2)+1/phi*(d^2phi)/(dx^2)+(2z)/(fphi).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=1/z and y=f(x), then prove that, (d^2f)/(dx^2)=2z^3dy/dz+z^4(d^2y)/(dz^2)

Given F(x)=f(x)phi(x) and f'(x)phi'(x)=c then prove that F''(x)/F(x)=(f'')/f+(phi'')/phi+2c

If x=f(t) and y=phi (t) then to prove that (dy)/(dx)=((dy)/(dt))/((dx)/(dt))=(phi'(t))/(f'(t)) .

If d/(dx)(phi(x))=f(x) , then

If F(x) =f(x) phi (x) and f'(x) phi' (x)=a (a constant), then prove that , (F'')/F=(f'')/f+(phi'')/phi+(2a)/(fphi) , where ''equivd^2/dx^2,'equivd/dx and F(x) ne 0.

x= f(t), y= phi (t) then (d^(2)y)/(dx^(2)) = ……..

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is