Home
Class 11
MATHS
Let f(x+y)=f(x)+f(y) for all real x,y an...

Let `f(x+y)=f(x)+f(y)` for all real `x,y and f'(0)` exists. Prove that `f'(x) = f'(0)` for all `x in R and 2f(x) = xf (2).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+y)=f(x)f(y) for all real x and y, f(6)=3 and f'(0)=10 , then f'(6) is

If 'f is a function such that f (x + y) =f (x) f (y) for all x,y in R and f ^(1) (0) exists, show that f ^(1) (x) = f(x) f ^(1)(0) for all x, y in R.

Let f(x+2y)=f(x)(f(y))^(2) for all x,y and f(0)=1. If f is derivable at x=0 then f'(x)=

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

If f(x+y)=f(x)+f(y) for all real x and y, show that f(x)=xf(1) .

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals -1 and f(0)=1, find f(2)

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals-1 and f(0)=1, find f(2)

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals-1 and f(0)=1, find f(2)