Home
Class 11
MATHS
If x=cost , y=loget then at t=pi/2, (d^2...

If `x=cost , y=log_et` then at `t=pi/2, (d^2y)/(dx^2)+((dy)/(dx))^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos t and y=log t , prove that at t=pi/2 , (d^2y)/(dx^2)+(dy/dx)^2=0 .

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y = sin (log _(e) x) then (x ^(2) (d ^(2) y)/(dx ^(2)) +x (dy )/(dx)=

If x=sint ,y=sinp t ,"p r o v et h a t" (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If y =x log (x/(a+bx)) then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2 .

If x=asint and y=a(cost+log tan(t/2) ) , find (d^2y)/(dx^2) .

If y=sin((log)_e x) , then x^2\ (d^2y)/(dx^2)+x(dy)/(dx) is equal to.......