Home
Class 12
MATHS
f(x)=sin^(-1)((2-3[x])/(4))," chere "[*]...

f(x)=sin^(-1)((2-3[x])/(4))," chere "[*]" dentes "4." I.F."

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sin^(-1)[2-4x^(2)] (where [.] is G.I.F) is

If f(x)=sin^(-1)x and lim_(xto1//2+)f(3x-4x^3)=a-3lim_(xto1//2+)f(x) , then [a] is equal to {where [] denotes G.I.F}

If f(x)=sin^(-1)x and lim_(xto1//2+)f(3x-4x^3)=a-3lim_(xto1//2+)f(x) , then [a] is equal to {where [] denotes G.I.F}

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is