Home
Class 14
MATHS
" (ii) "sqrt(x^(2)+y^(2))=log(x^(2)-y^(2...

" (ii) "sqrt(x^(2)+y^(2))=log(x^(2)-y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x-sqrt(a^(2)-y^(2))=a" log"(a-sqrt(a^(2)-y^(2)))/(y) , show that, (dy)/(dx)=(y)/(sqrt(a^(2)-y^(2)))

y = log((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))

y = log((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))

y=log[(x+sqrt(x^(2)+a^(2)))/(sqrt(x^(2)+a^(2))-x)]

If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=

If y=log(x+sqrt(x^(2) +a^(2))) , then (d^(2)y)/(dx^(2)) , is equal to

If y=log[x+sqrt(x^(2)+a^(2))], show that ((x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=xsqrt(a^(2)+x^(2))+a^(2)log(x+sqrt(a^(2)+x^(2))) , then show that dy/dx=2sqrt(a^(2)+x^(2)) .

If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2))) , then (dy)/(dx)=

If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2))) , then (dy)/(dx)=