Home
Class 12
MATHS
(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x))." Th...

(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x))." Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

If f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 , then the value of f^(-1)(x) is -

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

Integrate f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)) is

The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)) is

Let f be a real valued function defined by f(x)=(e^(x)-e^(-|x|))/(e^(x)+e^(|x|)), then the range of f(x) is: (a)R(b)[0,1](c)[0,1)(d)[0,(1)/(2))

The inverse of the function f:R to {x in R: x lt 1}"given by "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)), is