Home
Class 11
MATHS
If In=int(x^n dx)/(sqrt(x^2+a)) then pro...

If `I_n=int(x^n dx)/(sqrt(x^2+a))` then prove that `I_n+(n-1)/n al_(n-2)=1/n x^(n-1)*sqrt(x^2+a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(b) int(x^(n-1)dx)/(sqrt(a^n+x^n))

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_(n)=int_(0)^(1)x^(n)(tan^(-1)x)dx, then prove that(n+1)I_(n)+(n-1)I_(n-2)=-(1)/(n)+(pi)/(2)

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

int(x^(n-1))/(sqrt(1+4x^(n)))dx

int(x^(n-1)dx)/( sqrt(a^(n)+x^(n)))

If I_(n) = int_((pi)/(4))^((pi)/(2)) cot^(n) x dx , prove that I_(n) + I_(n-2) = (1)/(n-1)