Home
Class 11
MATHS
If phi(x)=f(x)+xf^(prime)(x) then intphi...

If `phi(x)=f(x)+xf^(prime)(x)` then `intphi(x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=f(a-x) then int_(0)^(a)xf(x)dx is equal to

If f(x)=f(pi+e-x) and int_(e)^( pi)f(x)dx=(2)/(e+pi) then int_(e)^( pi)xf(x)dx is equal to

If f(x)=sin^(-1)(sinx)+cos^(-1)(sinx) and phi(x)=f(f(f(x))) , then phi'(x) is equal to

If f(x) = f(a - x) , then int_0^(a) xf(x) dx is equal to :

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is equal to

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

If phi (x)=f(x)+x f'(x) , then the value of int phi (x) dx is -