Home
Class 11
MATHS
Prove that inte^(f(x))*[xf^(prime)(x)+(f...

Prove that `inte^(f(x))*[xf^(prime)(x)+(f^(primeprime)(x))/(|f^(prime)(x)|^2)]dx=e^(f(x))*(x-1/(f^(prime)(x)))+c` Hence or otherwise evaluate `int e^(x sin x+ cos x).((x^4 cos^3-xsinx+cosx)/(x^2.cos^2x))dx.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is

Show that int e^(x)[f(x)+f'(x)]dx=e^(x).f(x)+c Hence, evaluate: int e^(x)((2+sin2x)/(1+cos2x))dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x) dx . Hence, evaluate int_(0)^(pi//2) (sin x - cos x)/(1+ sin x cos x) dx.

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is