Home
Class 9
MATHS
" 6."8a^(2)b(a-b)^(2)-4a^(2)(a-b)^(3)...

" 6."8a^(2)b(a-b)^(2)-4a^(2)(a-b)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

The product of 4a^(2),-6b^(2) and 3a^(2)b^(2) is

Factorize: (a^(4)-8a^(2)b^(2)+16b^(4))-256a^(4)-6a^(2)b^(2)+9b^(4)-81

factorize ( i ) 4(a+b)-6(a+b)^(2) (ii) 8(3a-2b)^(2)-10(3a-2b)

Subtract 4a^(2) + 5b^(2) - 6c^(2) + 8 from 2a^(2) -3b^(2) - 4c^(2) - 5 .

The factors of 8a^(3)+b^(3)-6ab+1 are (a) (2a+b-1)(4a^(2)+b^(2)+1-3ab-2a) (b) (2a-b+1)(4a^(2)+b^(2)-4ab+1-2a+b)(2a+b+1)(4a^(2)+b^(2)+1-2ab-b-2a) (d) (2a-1+b)(4a^(2)+1-4a-b-2ab)

Simplify: 4a b(a-b)-6a^2(b-b^2)-3b^2(2a^2-a)+2a b(b-a)

Find the values of a and b, if A=B,where A=[{:(a+4,3b),(8,-6):}] "and" B=[{:(2a +2,b^(2)+2),(8,b^(2)-5b):}]

By how much is a^(4)+4a^(2)b^(2)+b^(4) more than a^(4)-8a^(2)b^(2)+b^(4)

The factors of 8a^3+b^3-6a b+1 are (a) (2a+b-1)(4a^2+b^2+1-3a b-2a) (b) (2a-b+1)(4a^2+b^2-4a b+1-2a+b) (c) (2a+b+1)(4a^2+b^2+1-2a b-b-2a) (d) (2a-1+b)(4a^2+1-4a-b-2a b)