Home
Class 12
MATHS
If x = -1 and x = 2 are extreme points o...

If x = -1 and x = 2 are extreme points of f(x) = `alpha log|x| + beta x^2 + x`, then

A

`alpha =-6,beta=1/3`

B

`alpha =-6,beta=-1/2`

C

`alpha =2,beta=-1/2`

D

`alpha = 2,beta=1/2`

Text Solution

Verified by Experts

`f(X)=(alpha)/(x)+2betax+1`
`rarr 2betax^(2)+x+alpha`=0 has roots -1 and 2
`rarr alpha=2,beta =-1/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x =-1 and x=2 ar extreme points of f(x) = alpha log|x|+betax^(2)+x , then

If x=-1 and x=2 are extreme points of f(x)=alpha log |x|+ betax^(2)+x then :

If x=-1 and x = 2 are extreme points of f(x)=alphalog|x|+betax^(2)+x then-

If x=-1 and x=2 are extreme points of f(x) alpha log |x|+betax^2+x then

If x = -1 and x= 2 are the extreme points of y= alpha log x+ beta x^2 + x then A) alpha =6, beta = 1/2 B) alpha =- 6, beta = - 1/2 C) alpha =2, beta = -1/2 D) alpha =2, beta = 1/2

If x=-1 and x=2 are extreme points of f(x)=alphalog|x|+beta|x|^2+x then :

If x=-1 and x=""2 are extreme points of f(x)""=alphalog|x|+betax^2+x , then (1) alpha=-6,beta=1/2 (2) alpha=-6,beta=-1/2 (3) alpha=2,beta=-1/2 (4) alpha=2,beta=1/2

If f(x) = a log |x| + bx^(2) + x has extreme values at x = -1 and x = 2 , then the ordered pair (a,b) =