Home
Class 14
MATHS
" iv."lim(x rarr2)((x-2))/(log(8)(x-1))...

" iv."lim_(x rarr2)((x-2))/(log_(8)(x-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr2)(x-2)/(log_(a)(x-1))

Evaluate lim_(x rarr2)(x-2)/(log_(a)(x-1))

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

lim_(x rarr2)((x^(5)-32)/(x^(3)-8))

The limit lim_(x rarr2)(log_(e)(x-2))/(log_(6)(e^(x)-e^(2))) equals

lim_(x rarr2)(log(2x-3))/(2(x-2))

lim_(x rarr2)(x^(2)-2x)/(x^(3)-8)

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

lim_(x rarr0)(log(1+x))/(x)=1