Home
Class 9
MATHS
3/sqrt(19-2sqrt(88)) - 8/sqrt(14+2sqrt(3...

`3/sqrt(19-2sqrt(88)) - 8/sqrt(14+2sqrt(33))=`_____.

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(2)-sqrt(8))/(sqrt(2)+sqrt(8))

(3)/(sqrt(8)-sqrt(2)+sqrt(5))

Let alpha = sqrt(19-8sqrt(3)) + sqrt(7+4sqrt(3)) and beta = sqrt(83-18sqrt(2)) - sqrt(6-4sqrt(2)) , then log_(2)((alpha)/(beta)) lies in the interval

Simplify (sqrt(11)+sqrt(8))(sqrt(11)-2sqrt(2))

If the direction ratios of a line are proportional to ( 1, -3, 2 ) then its direction cosines are 1/(sqrt(14)),-3/(sqrt(14)),2/(sqrt(14)) b. 1/(sqrt(14)),2/(sqrt(14)),3/(sqrt(14)) c. -1/(sqrt(14)),3/(sqrt(14)),2/(sqrt(14)) d. -1/(sqrt(14)),-2/(sqrt(14)),-3/(sqrt(14))

If the direction ratios of a line are proportional to 1, -3, 2 then its direction cosines are 1/(sqrt(14)),-3/(sqrt(14)),2/(sqrt(14)) b. 1/(sqrt(14)),2/(sqrt(14)),3/(sqrt(14)) c. -1/(sqrt(14)),3/(sqrt(14)),2/(sqrt(14)) d. -1/(sqrt(14)),-2/(sqrt(14)),-3/(sqrt(14))

(1)/(sqrt(11-2sqrt(30)))-(3)/(sqrt(7-2sqrt(10)))-(4)/(sqrt(8+4sqrt(3)))

(2sqrt(-5)+3sqrt(-2))(-3sqrt(-8)-sqrt(-20))

(sqrt(2)+sqrt(3))times(sqrt(3)+sqrt(8))