Home
Class 12
MATHS
" 3."(d)/(dx)(cot^(-1)x)=?...

" 3."(d)/(dx)(cot^(-1)x)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)(cot^(-1)x)=(-1)/((1+x^(2))) , where x in R .

If (d)/(dx)[cot^(-1)(x+1)]+(d)/(dx)(tan^(-1)x)=(d)/(dx)(tan^(-1)u)," then "u=

(d)/(dx)cot^(-1)((1+x)/(1-x))=

(d)/(dx)[cot^(-1)((1-x)/(1+x))]=

Find (d)/(dx)cot^(-1)((1-x^(2))/(2x))

(d)/(dx)[cot^(-1)sqrt((x)/(1-x))]=

(d)/(dx)cot^(-1)((1+x)/(1-x)) is equal to,if x<-1

(d)/(dx) {Cot ^(-1) ((1+x)/(1 -x))}=

The differentiation of cotxquad with respect to x is -csc^(2)x. i.e.(d)/(dx)(cot x)=-csc^(2)x