Home
Class 12
MATHS
If the three vectors veca, vecb , vecc a...

If the three vectors `veca`, `vecb` , `vecc` are coplanar, prove that the vectors ` vec a+ vec b , vec b+ vec c` and ` vec c+ vec a` are also coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the three vectors vec a,vec b,vec c are coplanar, prove that the vectors vec a+vec b,vec b+vec c and vec c+vec a are also coplanar.

If the vectors vec(a), vec(b) and vec(c ) are coplanar, prove that the vectors vec(a) + vec(b), vec(b) + vec(c ) and vec(c )+vec(a) are also coplanar.

The vectors vec a,vec b,vec c,vec d are coplanar then

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

If vec a,vcb and vec c are non-coplanar vectors, then show that vec a+vec b,vec b+vec c and vec c+vec a are also non-coplanar

i. If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.