Home
Class 12
MATHS
[" Let "F(x)=f(x)+f((1)/(x))," where "f(...

[" Let "F(x)=f(x)+f((1)/(x))," where "f(x)=int_(1)^(x)(log t)/(1+t)dt],[" Then "F(e)" equals "],[[" (A) "1," (B) "2," (C) "1/2," (D) "0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let F(x)= f(x) + f(1/x) , where f(x)= int_(1)^(x) (ln t)/(1+t)dt , then F(e)=

Let F(x)=f(x)+f((1)/(x)), where f(x)=int_(t)^(x)(log t)/(1+t)dt (1) (1)/(2)(2)0(3)1(4)2

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals