Home
Class 11
MATHS
For any x,yepsilon R, xy > 0 then the mi...

For any `x,yepsilon R, xy > 0` then the minimum value `(2x)/y^3+ (x^3y)/3+(4y^2)/(9x^4)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

For any x,y varepsilon R,xy>0 then the minimum value (2x)/(y^(3))+(x^(3)y)/(3)+(4y^(2))/(9x^(4)) equals

For any x,y in R,xy>0 then the minimum value of (2x)/(y^(3))+(x^(3)y)/(3)+(4y^(2))/(9x^(4)) euals :

For any x ,y , in R^+,x y >0 . Then the minimum value of (2x)/(y^3)+(x^3y)/3+(4y^2)/(9x^4) is.

For any x ,y , in R^+,x y >0 . Then the minimum value of (2x)/(y^3)+(x^3y)/3+(4y^2)/(9x^4) is.

For any x,y, in R,xygt0 . Then the minimum value of (2x)/(y^3)+(x^3y)/(3)+(4y^2)/(9x^4) is ___________.

For any x,y, in R,xygt0 . Then the minimum value of (2x)/(y^3)+(x^3y)/(3)+(4y^2)/(9x^4) is ___________.

For anyx ,y,in R^(+),xy>0. Then the minimum value of (2x)/(y^(3))+(x^(3)y)/(3)+(4y^(2))/(9x^(2)) is.

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.