Home
Class 12
MATHS
[" (5) "int(0.)^(-1)tan^(-1)1+tan^(-1)2+...

[" (5) "int_(0.)^(-1)tan^(-1)1+tan^(-1)2+tan^(-1)3=pi],[theta=(3)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

If x_(1),x_(2),x_(3) are the real roots of the equation x^(3)-x^(2)tantheta+xtan^(2)theta+tantheta=0and0ltthetalt(pi)/(4) then the value of tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)" at "theta=(pi)/(12) is

int_(0)^(pi//2)(dx)/(1+tan^(3)x)=

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)