Home
Class 12
MATHS
" If "a^(2)x^(4)+b^(2)y^(4)=c^(6)" then ...

" If "a^(2)x^(4)+b^(2)y^(4)=c^(6)" then the maximum value of "xy" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)x^(4) + b^(2)y^(4)=c^(6) , then maximum value of xy is

If a^(2)x^(4) + b^(2)y^(4) = c^(6) , then maximum value of xy is

If a^2x^4+b^2y^4=c^6 then the maximum value of xy is

If a^(2)x^(4)+b^(2)y^(4)=c^(6)(a,b,x,y,cgt0) then the maximum value of xy is

If x+y=4, then maximum value of xy is

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If x-2y=4 the minimum value of xy is

If 4x^(2)+y^(2)=1 then the maximum value of 12x^(2)-3y^(2)+16xy is