Home
Class 11
MATHS
lim(x->oo) sinx equals...

`lim_(x->oo) sinx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)sinx/x =

(lim)_(x->oo)(sinx)/x equals a. 1 b . 0 c. oo d. does not exist

lim_(x->oo)[sinx/x]

lim_(x->oo) (sinx/x) =

lim_(xtooo)sinx is equal to

If a=lim_(x->oo) sinx/x & b=lim_(x->0) sinx/x Then int (ab log(1+x)+x^2)dx is equal to

Evaluate the following limit: lim_(x->oo) (sin(a+x) + sin(a-x) - 2 sin a)/(x sinx))

lim_(x to oo) (sinx)/x is …….

Evaluate: lim_(x->oo) (x+7sinx)/(-2x+13)