Home
Class 11
MATHS
If the circles x^(2)+y^(2)+2gx+2fy=0and ...

If the circles `x^(2)+y^(2)+2gx+2fy=0and x^(2)+y^(2)+2g'x+2f'=0` touch each other then prove that `f' f = fg`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circles x^(2)+y^(2)+2gx+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other, then

If the circles x ^(2) +y^(2) +2gx +2fy =0 and x ^(2) +y^(2) +2g'x+ 2f'y=0 touch each other then-

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If the two circles x^(2)+y^(2)+2gz+2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then show that f'g=fg'

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then f'g =fg'.

if the two circles x^2 + y^2 + 2gx + 2fy = 0 and x^2 + y^2 + 2g'x + 2 f'y = 0 touch each other then show that f'g = fg'