Home
Class 12
MATHS
[" The internal centre of similitude of ...

[" The internal centre of similitude of the circles "x^(2)+y^(2)-2x+4y+4=0],[x^(2)+y^(2)+4x-2y+1=0" divides the segment joining their centres in the ratio "],[quad 1:2],[quad 2:1]

Promotional Banner

Similar Questions

Explore conceptually related problems

The external centre of similitude of the circle x^(2)+y^(2)-12x+8y+48=0 and x^(2)+y^(2)-4x+2y-4=0 divides the segment joining centres in the ratio

The external centre of similitude of the circle x^(2)+y^(2)-12x+8y+48=0 and x^(2)+y^(2)-4x+2y-4=0 divides the segment joining centres in the ratio.

The external centre of similitude of the circle x^(2)+y^(2)-12x+7y+48=0 and x^(2)+y^(2)-4x+2y-4=0 divides the segment joining centres in the ratio.

The external centre of similitude of the two circles x^(2)+y^(2)-2x-6y+9=0, x^(2)+y^(2)=4 is

The external centre of similitude of the two circles x^(2)+y^(2)-2x-6y+9=0, x^(2)+y^(2)=4 is

The internal centre of similitude of the two circles x^(2)+y^(2)+6x-2y+1=0, x^(2)+y^(2)-2x-6y+9=0 is

The internal centre of similitude of the two circles x^(2)+y^(2)+6x-2y+1=0, x^(2)+y^(2)-2x-6y+9=0 is

The internal centre of similitude of the two circles x^(2)+y^(2)+6x-2y+1=0 , x^(2)+y^(2)-2x-6y+9=0 is

The circles x^(2)+y^(2)-2x-4y+1=0 and x^(2)+y^(2)+4y-1 =0