Home
Class 12
MATHS
Find the value of the function f(x)=1+x+...

Find the value of the function `f(x)=1+x+int_1^x((lnt)^2+2lnt) dt` where `f'(x)` vanishes

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of the function f (x) = int _(0) ^(x) |t-1| dt, where 0 le x le 2

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

Find the derivatives of the following functions : (a) F (x) = int_(1)^(x) " In t dt " (x gt 0) (b) F (x) = int_(2//x)^(x^(2)) (dt)/(t)

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If f(x) = int_(x)^(x^(2)) t^(2)lnt then find f'(e)

If f(x) = int_(x)^(x^(2)) t^(2)lnt then find f'(e)

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

The range of the function f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)] is