Home
Class 11
MATHS
" 8.For any positive integer "n" ,"lim(x...

" 8.For any positive integer "n" ,"lim_(x rarr a)(x^(n)-a^(n))/(x-a)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive integer lim_(x rarr a)(x^(h)-a^(n))/(x-a)=na^(n-1)

For any positive integer n, lim_(xtoa)(x^(n)-a^(n))/(x-a)=na^(n-1)

(lim_(x rarr a)(x^(n)-a^(n))/(x-a) is equal to na^(n)b*na^(n-1) c.nad.1

lim_ (x rarr a) (x ^ (n) -a ^ (n)) / (xa) = n * a ^ (n-1)

find n in N, if lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80

Find the positive integer n so that lim_(xto3)(x^(n)-3^(n))/(x-3)=27

lim_ (n rarr oo) (x ^ (n)) / (n!)

Evaluate: lim_(x rarr a) [(x^(n)-a^(n))/(x^(m)-a^(m))] .

Find the positive integer n so that lim_( x to 3) (x^n-3^n)/(x-3)=27