Home
Class 11
MATHS
f(x)=3sin(pi x)/(3)+4cos(pi x)/(4)...

f(x)=3sin(pi x)/(3)+4cos(pi x)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of f(x)=(sin(pi x))/(2)+2(cos(pi x))/(3)-(tan(pi x))/(4) is

Find the period of f(x) = 2 sin ""(pi x)/(4) + 3cos"" (pi x)/(3)

If f_(n)(x) = (sin x)/(cos3x)+(sin 3x)/(cos 3^(2)x) +(sin 3^(2)x)/(cos 3^(3)x) +....+ (sin 3^(n-1)x)/(cos 3^(n)x)"Then" f_(2) ((pi)/(4)) + f_(3) ((pi)/(4))=

The period of sin ((pi x )/( 2 )) + 2 cos ((pi x)/( 3 ) ) - tan ((pi x)/(4)) is

Simplify cos^-1(3/5cosx + 4/5 sin x), x in (-(2pi)/(3) , (pi)/(4))

Prove that cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)