Home
Class 12
MATHS
The value of the lim(x->0)x/a[b/x](a!=0)...

The value of the `lim_(x->0)x/a[b/x](a!=0)(where [*]` denotes the greatest integer function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to