Home
Class 12
MATHS
[" Example "$" Let "f:R rarr R" be a dif...

[" Example "$" Let "f:R rarr R" be a differentiable function such that "f(0)=0.f((pi)/(2))=3],[[" and "f'(0)=1],[(pi)/(2)," cott "],[" If "g(x)=int[f'(t)cosec t-(dt)/(dt)cosec tf(t)]" dt "," for "x in(0,(pi)/(2)]," then "lim_(x rarr0)0(x)=]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a differentiable function such that f(0)=0,f(((pi)/(2)))=3 and f'(0)=1 If g(x)=int_(x)^((pi)/(2))[f'(t)cos ect-cot t cos ectf(t)]dt for x in(0,(pi)/(2)] then lim_(x rarr0)g(x)=

Let f:R rarr R be a differentiable function such that f(0),f((pi)/(2))=3 and f'(0)=1. If g(x)=int_(x)^((pi)/(2))[f'(t)csc t-cot t csc tf(t)]dt for x in(0,(pi)/(2)] then lim_(x rarr0)g(x)=

Let f:R rarr R be a differentiable and strictly decreasing function such that f(0)=1 and f(1)=0. For x in R, let F(x)=int_(0)^(x)(t-2)f(t)dt

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f(x) is a differentiable function of x then lim_(h rarr0)(f(x+3h)-f(x-2h))/(h)=

If f is a differentiable function of x, then lim_(h rarr0)([f(x+n)]^(2)-[f(x)]^(2))/(2h)

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to

Let f:(0, oo)rarr(0, oo) be a differentiable function such that f(1)=e and lim_(trarrx)(t^(2)f^(2)(x)-x^(2)f^(2)(t))/(t-x)=0 . If f(x)=1 , then x is equal to :