Home
Class 12
MATHS
Using integration find the area of the r...

Using integration find the area of the region `{(x,y):x^2+y^2<=2ax, y^2>=ax,x,y>=0}`

Text Solution

Verified by Experts

`x^2+y^2<=2ax`
`x^2-2ax+y^2+a^2-a^2<=0`
`(x-a)^2+y^2<=a^2`
`y^2>=ax`
`(x-a)^2+ax=a^2`
`x^2+a^2-2ax+ax=a^2`
`x(x-a)=0`
`x=0,a`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Using integration find the area of the region "{"(x , y")":x^2+y^2lt=2a x ,y^2geqa x ,x ,ygeq0} .

Using integration,find the area of the region {(x,y):x^(2)+y^(2)<=1<=x+(y)/(2)}

Using integration,find the area of the region: {(x,y):9x^(2)+y^(2) =6}

Using integration, find the area of the region {(x,y) : x^(2) + y^(2) le 16, x^(2) le 6y} .

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

Using integration, find the area of the region: {(x , y):9x^2+y^2lt=36\ "and"\ 3x+ygeq6}