Home
Class 12
MATHS
The expressions 1+x,1+x+x^2,1+x+x^2+x^3....

The expressions `1+x,1+x+x^2,1+x+x^2+x^3.............1+x+x^2+..............+x^a` are mutiplied together and the terms of the product thus obtained are arranged in increasing powers of `x` in the from of `a_0+a_1x+a_2x^2+.................,` then,

Promotional Banner

Similar Questions

Explore conceptually related problems

The expressions 1+x,1+x+x^2,1+x+x^2+x^3,.............1+x+x^2+..............+x^n are mutiplied together and the terms of the product thus obtained are arranged in increasing powers of x in the from of a_0+a_1x+a_2x^2+................., then sum of even coefficients?

The expressions 1+x,1+x+x^2,1+x+x^2+x^3,.............1+x+x^2+..............+x^n are mutiplied together and the terms of the product thus obtained are arranged in increasing powers of x in the from of a_0+a_1x+a_2x^2+................., then sum of even coefficients?

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

If (1-px)^-1/((1-qx))=a_0+a_1x+a_2x^2+a_3x^3+....... then a_n=

let f(x)=a_0+a_1x^2+a_2x^4+............a_nx^(2n) where 0< a_0 < a_1 < a_3 ............< a_n then f(x) has

If (1+x+2x^2)^20=a_0 + a_1x+a_2x^2+....................+a_40x^40 then a_0+a_2+a_4+.............+a_38 is

If (1+x+x^2)^n = a_0+a_1x+a_2x_2 +..............+a_(2n)x^(2n) then the value of a_1+a_4+a_7+.........

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to