Home
Class 12
MATHS
Simplify costheta[[costheta,sintheta],[-...

Simplify `costheta[[costheta,sintheta],[-sintheta,costheta]]+sintheta[[sintheta,-costheta],[costheta,sintheta]]`

Text Solution

AI Generated Solution

To simplify the expression \( \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} + \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \), we will follow these steps: ### Step 1: Multiply the first matrix by \( \cos \theta \) We start with the first term: \[ \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta.[{:(sintheta,-costheta),(costheta,sintheta):}]=I.

costheta[(costheta, sintheta),(-sintheta,costheta)]+sintheta[(sintheta,-costheta),(costheta,sintheta)] is equal to (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

If sintheta+costheta=x then sintheta-costheta=?

Simplify (1-costheta)/sintheta

Simplify (1-costheta)/sintheta