Home
Class 11
MATHS
sin[(1)/(2)cos^(-1)((4)/(5))]=(1)/(sqrt(...

sin[(1)/(2)cos^(-1)((4)/(5))]=(1)/(sqrt(10))

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)((-1)/(2))-2sin^(-1)((1)/(2))+3cos^(-1)((-1)/(sqrt(2)))-4tan^(-1)(-1) equals to

The value of expression tan^(-1)((sqrt(2))/(2))+sin^(-1)((sqrt(5))/(5))-cos^(-1)((sqrt(10))/(10))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

If sin^(-1)(1/sqrt(5)) and cos^(-1)(3/sqrt(10)) are angles in [0,(pi)/(2)] , then their sum is equal to

tan^(-1)(2)=sin^(-1)(2/(sqrt(5)))=cos^(-1)(1/(sqrt(5)))

If quad x_(1)=cos^(-1)((3)/(5))+cos^(-1)((2sqrt(2))/(3)) and x_(2)=sin^(-1)((3)/(5))+sin^(-1)((2sqrt(2))/(5))