Home
Class 11
MATHS
veca+2vecb+3vecc=vec0 and vecaxxvecb+vec...

`veca+2vecb+3vecc=vec0` and `vecaxxvecb+vecbxxvecc+veccxxveca=l(vecbxxvecc)`. then `l=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

If veca+2vecb+3vecc=vecO , then vecaxxvecb+vecbxxvecc+veccxxveca=

If veca+vecb+vecc=vec0 , show that vecaxxvecb=vecbxxvecc=veccxxveca .

If veca+2vecb=3vecb=0, then vecaxxvecb+vecbxxvecc+veccxxveca= (A) 2(vecaxxvecb) (B) 6(vecbxxvecc) (C) 3(veccxxveca) (D) 0

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

Prove that [vecaxxvecb,vecbxxvecc,veccxxveca]=[veca,vecb,vecc]^(2) .

Prove that [vecaxxvecb,vecbxxvecc,veccxxveca]=[veca,vecb,vecc]^(2)

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)