Home
Class 11
MATHS
If veca is a non-zero vector and veca.ve...

If `veca` is a non-zero vector and `veca.vecb=veca.vecc, vecaxxvecb=vecaxxvecc`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

veca,vecb,vecc are non zero vectors. If vecaxxvecb=vecaxxvecc and veca.vecb=veca.vecc then show that vecb=vecc .

For the non-zero vectors veca, vecb and vecc, veca.(vecbxxvecc) = 0 if

If veca, vecb, vecc non-zero vectors such that veca is perpendicular to vecb and vecc and |veca|=1, |vecb|=2, |vecc|=1, vecb.vecc=1 . There is a non-zero vector coplanar with veca+vecb and 2vecb-vecc and vecd.veca=1 , then the minimum value of |vecd| is

veca,vecb,vecc are three non zero vectors such that vecaxxvecb=vecc,vecbxxvecc=veca .Prove that veca,vecb,vecc are mutually at right angle and |vecb|=1,|vecc|=|veca| .

For non zero vectors veca,vecb, vecc |(vecaxxvecb).vecc|=|veca||vecb||vecc| holds iff

For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb||vecc| holds iff

If veca, vecb and vecc are non - zero vectors such that veca.vecb= veca.vecc ,then find the goemetrical relation between the vectors.

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to