Home
Class 12
MATHS
f(1)=1 and f(n)=2sum(r=1)^(n-1) f (r). T...

`f(1)=1 and f(n)=2sum_(r=1)^(n-1) f (r)`. Then `sum_(n=1)^mf(n)` is equal to (A)`3^m-1` (B)`3^m` (C)`3^(m-1)` (D)none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(1)=1 and f(n)=2 sum_(r=1)^(n-1)f(r) then sum_(n=1)^(m)f(n)=

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^(n)r^(3)=f(n) then sum_(r=1)^(n)(2r-1)^(3) is equal to

sum_(r=1)^(n)r^(2)-sum_(m=1)^(n)sum_(r=1)^(m)r is equal to

Let sum_(r=1)^(n)(r^(4))=f(n). Then sum_(r=1)^(n)(2r-1)^(4) is equal to :

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :