Home
Class 12
MATHS
Let f(x) = 1 + |x|,x < -1 [x], x >= -1, ...

Let `f(x) = 1 + |x|,x < -1 [x], x >= -1, where [*]` denotes the greatest integer function.Then `f { f (- 2.3)}` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=1+|x|, x lt -1 [x], x ge -1 , where [.] denotes the greatest integer function. Then f{f(-2,3)} is equal to

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is